Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats.
نویسندگان
چکیده
Long-term exposure to intermittent hypoxia (IH), such as that occurring in association with sleep apnea, may result in systemic hypertension; however, the time course changes in arterial pressure, autonomic functions, and baroreflex sensitivity are still unclear. We investigated the changes in cardiovascular neural regulations during the development of chronic IH-induced hypertension in rats. Sprague-Dawley rats were exposed to repetitive 1.25-min cycles (30 s of N2+45 s of 21% O2) of IH or room air (RA) for 6 h/day during light phase (10 AM-4 PM) for 30 days. Arterial pressure was measured daily using the telemetry system during RA breathing. The mean arterial pressure (MAP) and interpulse interval (PPI) signals were then used to assess the autonomic functions and spontaneous baroreflex sensitivity by auto- and cross-spectral analysis, respectively. Stable MAP, low-frequency power of MAP (BLF), and low-frequency power (LF)-to-high frequency power (HF) ratio of PPI (LF/HF) were significantly higher in IH-exposed rats, compared with those of RA-exposed rats. Elevation of the MAP, BLF, LF/HF, and minute ventilation started 5 days after IH exposure and lasted until the end of the 30-day observation period. Additionally, IH-exposed rats had significant lower slope of MAP-PPI linear regression (under a successively descending and ascending) and magnitude of MAP-PPI transfer function (at frequency ranges of 0.06-0.6 Hz or 0.6-2.4 Hz) after IH exposure for 17 days. However, RA-exposed rats did not exhibit these changes. The results of this study indicate that chronic IH-induced hypertension is associated with a facilitation of cardiovascular sympathetic outflow and inhibition of baroreflex sensitivity in conscious rats.
منابع مشابه
Carotid Body Ablation Abrogates Hypertension and Autonomic Alterations Induced by Intermittent Hypoxia in Rats.
Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, enhances carotid body (CB) chemosensory responses to hypoxia and produces autonomic dysfunction, cardiac arrhythmias, and hypertension. We tested whether autonomic alterations, arrhythmogenesis, and the progression of hypertension induced by CIH depend on the enhanced CB chemosensory drive, by ablation of the CB ch...
متن کاملCarotid body potentiation during chronic intermittent hypoxia: implication for hypertension
Autonomic dysfunction is involved in the development of hypertension in humans with obstructive sleep apnea, and animals exposed to chronic intermittent hypoxia (CIH). It has been proposed that a crucial step in the development of the hypertension is the potentiation of the carotid body (CB) chemosensory responses to hypoxia, but the temporal progression of the CB chemosensory, autonomic and hy...
متن کاملRespiratory Network Enhances the Sympathoinhibitory Component of Baroreflex of Rats Submitted to Chronic Intermittent Hypoxia.
Chronic intermittent hypoxia (CIH) produces respiratory-related sympathetic overactivity and hypertension in rats. In this study, we tested the hypothesis that the enhanced central respiratory modulation of sympathetic activity after CIH also decreases the sympathoinhibitory component of baroreflex of rats, which may contribute to the development of hypertension. Wistar rats were exposed to CIH...
متن کاملActivation of central angiotensin type 2 receptors by compound 21 improves arterial baroreflex sensitivity in rats with heart failure.
BACKGROUND In a previous study we demonstrated that central administration of compound 21 (C21), a nonpeptide AT2R agonist, inhibited sympathetic tone in normal rats. In this study, we hypothesized that C21 exerts a similar effect in rats with coronary ligation-induced heart failure (HF). METHODS C21 was intracerebroventricularly infused for 7 days by osmotic mini pump. Blood pressure (BP) an...
متن کاملChronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB /p38 pathway
Objective(s): Inflammation is involved in various forms of pulmonary arterial hypertension (PAH). Although the pathophysiology of PAH remains uncertain, NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) has been reportedto be associated with many inflammatory mediators of PAH. This study aimed to evaluate the effect of chronic intermittent hypobaric hypoxia (CIHH) on pulmonary inflammat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 100 6 شماره
صفحات -
تاریخ انتشار 2006